
Jyväskylä Summer School 2006

Course MA2: Solutions to exercises

Here you will find solutions to all the exercises I set during the course MA2, together
with some I didn’t have time to set during the lectures. I have retained the original
numbering, although in the lecture notes provided by Tuomas Puurtinen for courses MA1
and MA2 my sections are numbers 2, 5, 6, 8, 9, 11, 12 and 14, with a corrresponding
renumbering of exercises. If you have any questions about these solutions, please contact
me at G.A.Jones@maths.soton.ac.uk. Gareth Jones

Exercise 1.1. Find the discriminant of the elliptic curve y2 = x3 − 9x2 + 23x− 15. Put
the curve into Weierstrass and Legendre normal forms.

Solution. x3 − 9x2 + 23x − 15 = (x − 1)(x − 3)(x − 5) has roots ej = 1, 3, 5, so ∆ =
16
∏
j<k(ej − ek)2 = 212 = 4096.
Replacing x with ax+ b converts the right-hand side of the equation into

(ax+ b)3 − 9(ax+ b)2 + 23(ax+ b)− 15

= a3x3 + (3a2b− 9a2)x2 + (3ab2 − 18ab+ 23a)x+ (b3 − 9b2 + 23b− 15),

so take b = 3 to removee the quadratic term and a = 41/3 to give a leading coefficient
equal to 4. The resulting Weierstrass form is

y2 = 4x3 − 44/3x

with g2 = 44/3 and g3 = 0. Alternatively, replace x with x + 3 to give y2 = x3 − 4x, and
then replace y with y/2 to give y2 = 4x2 − 16x. (The Weierstrass form is not unique.)

Replacing x with 2x + 1 converts the right-hand side into 2x(2x − 2)(2x − 4) =
8x(x − 1)(x − 2), and replacing y with 2

√
2y converts the left-hand side into 8y2, giving

Legendre form y2 = x(x − 1)(x − 2), with λ = 2. (Other solutions are possible, with
λ = 1/2 or −1, depending on the affine transformation applied to x.)

Exercise 1.2. Show that ℘′ is doubly periodic wth respect to Λ, so that ℘′ ∈ F (Λ).
Deduce that ℘ is doubly periodic wth respect to Λ, so that ℘ ∈ F (Λ).

Solution. As the derivative of a meromorphic function ℘, ℘′ is also meromorphic. Now

℘(z)′ = −2
∑
ω

(z − ω)−3,

so if ωj (j = 1, 2) is one of the basis elements of Λ then

℘′(z + ωj) = −2
∑
ω

(z + ωj − ω)−3 = −2
∑
ω

(z − (ω − ωj))−3.

Since Λ is a group, and ωj ∈ Λ, it follows that as ω ranges over Λ so does ω−ωj . Thus the
series for ℘′(z+ωj) is simply a rearrangement of the series for ℘(z), so (assuming absolute
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convergence) we have ℘′(z + ωj) = ℘′(z) for all z. Thus ℘′ is invariant under ω1 and ω2,
and hence under Λ since these basis elements generate Λ. This shows that ℘′ ∈ F (Λ).

Integrating ℘′(z + ωj) = ℘′(z) with respect to z gives ℘(z + ωj) = ℘(z) + cj for
some constant cj . Taking z = −ωj/2 we get ℘(−ωj/2) = ℘(ωj/2) + cj , finite since ℘ is
holomorphic on C \ Λ. By inspection of its defining series, ℘ is an even function (since
−Λ = Λ), so ℘(−ωj/2) = ℘(ωj/2) and hence cj = 0. Thus ℘(z + ωj) = ℘(z) for all z and
for j = 1, 2, so ℘ ∈ F (Λ).

Exercise 1.3. Show that Γ acts transitively on the rational projective line Q̂ = P 1(Q) =
Q∪ {∞}. Show that Γ(2) has three orbits on Q̂, and deduce that Γ/Γ(2) is isomorphic to
S3, the symmetric group of degree 3.

Solution. The group Γ leaves Q̂ invariant, since if τ ∈ Q̂ then T (τ) ∈ Q̂ for each T ∈ Γ.
Every rational number r can be written in the form a/c with a and c coprime integers. Then
there exist integers b and d such that ad − bc = 1, and the corresponding transformation
T : τ 7→ (aτ + b)/(cτ + d) sends ∞ to a/c = r. Thus every element of Q is in the same
orbit as ∞, so Γ acts transitively on Q̂.

The elements T of Γ in Γ(2) are those with a and d odd, b and c even. I claim that the
orbits [0], [1] and [∞] containing 0, 1 and∞ are the subsets of Q̂ consisting of those elements
r = p/q (p and q coprime integers) such that p is even and q is odd, p and q are both odd,
and p is odd and q is even. (We write ∞ = 1/0 here.) Then T (r) = (ap + bq)/(cp + dq)
with numerator and denominator having the same parity as p and q, so these three subsets
are invariant under Γ(2). In the first paragraph, if a is odd and c is even, then d is odd and
we can choose b to be even (replacing b with b′ = b+ a and d with d′ = d+ c if necessary,
so that ad′ − b′c = 1); thus [∞] is the orbit of Γ(2) containing ∞. We can use similar
arguments for the orbits [0] and [1], but the next part of the solution gives a quicker way.

Suppose that r and r′ are in the same orbit of Γ(2), say r′ = T (r) where T ∈ Γ(2).
If S ∈ Γ then S(r′) = STS−1(S(r)) with STS−1 ∈ Γ(2) since Γ(2) is a normal subgroup
of Γ, so S(r) and S(r′) are in the same orbit of Γ(2). Thus Γ permutes the orbits of Γ(2).
(It now follows, by applying X and Z to [0], that [∞] and [1] are as described above.)

The action of Γ on these three orbits gives a homomorphism θ : Γ→ S3. The generator
X : τ 7→ −1/τ of Γ transposes the orbits [0] and [∞], and the generator Y : τ 7→ (−τ−1)/τ
induces a 3-cycle ([0], [∞], [1]); these permutations generate S3, so θ is an epimorphism.
Since Γ(2) leaves each of its orbits invariant it is contained in the kernel ker θ. But Γ(2)
and ker θ both have index 6 in Γ, so they are equal. The first isomorphiasm theorem now
gives Γ/Γ(2) ∼= S3.

Exercise 1.4. Evaluate J at τ = i and at τ = ζ3 (= e2πi/3), and find the corresponding
elliptic curves.

Solution. Firstly take τ = i and Λ = Λ(1, i) = {m + ni | m,n ∈ Z}, the square lattice.
Now iΛ = Λ, implying that as ω ranges over Λ\{0}, so does iω. Thus g3 = 140

∑′
ω ω
−6 =

140
∑′
ω(iω)−6 = −140

∑′
ω ω
−6 = −g3, so g3 = 0 and hence J = g3

2/(g
3
2 − 27g2

3) = 1. The
elliptic curve E corresponding to C/Λ has Weierstrass form y2 = 4x3−g2x−g3 = 4x3−g2x,
and by multiplying x and y by suitable constants we can transform this into the isomorphic
curve y2 = x(x2 − 1), in Legendre form with λ = −1.
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Secondly take τ = ζ3 = e2πi/3 and Λ = {m + nζ3 | m,n ∈ Z}, the hexagonal lattice.
Then ζ3Λ = Λ, so a similar argument gives g2 = 60

∑′
ω ω
−4 = 60

∑′
ω(ζ3ω)−4 = ζ−1

3 g2.
Thus g2 = 0 and hence J = 0. The Weierstrass form is y2 = 4x3 − g3, and as before,
multiplying x and y by suitable constants, we can transform this to the simpler curve
y2 = x3 − 1.

Exercise 2.1. If x = (1, 2, . . . , N) and y = (1, 2) in SN , draw the corresponding dessin B
and find its monodromy group G.

Solution. The dessin B has a single black vertex v of valency N , corresponding to the
single cycle of x of length N . If we number the edges 1, 2, . . . , N in the positive order
around v, then edges 1 and 2 meet at a single white vertex of valency 2, corresponding to
the 2-cycle (1, 2) in y, and each of the other N − 2 edges is incident with a white vertex of
valency 1, corresponding to a fixed point of y. There are two faces, corresponding to the
two cycles of xy = (1)(2, 3, . . . , N).

The monodromy group G = 〈x, y〉 is the symmetric group SN : conjugating y by
powers of x gives all transpositions of the form (i, i + 1), and every cyclic permutation is
a product of these, so every element of SN is a product of powers of x and y.

Exercise 2.2. Show that C ∼= NG(Ge)/Ge where N(Ge) is the normaliser of Ge in G.

Solution. Let H = Ge for some fixed e ∈ E, and let N = NG(H). We will define an
epimorphism α : N → C with kernel H, so the first isomorphism theorem gives N/H ∼= C.
Each element of E has the form e′ = eg for some g ∈ G, so let each n ∈ N act on E
by sending e′ to eng. This is well-defined, since if e′ = eg1 = eg2 then g1g

−1
2 ∈ H so

ng1g
−1
2 n−1 ∈ H and hence eng1 = eng2. It is easy to check that α(n) : eg 7→ eng is a

permutation of E, and that it commutes with G, so α(n) ∈ C. Now α(n1n2) sends eg to
e(n1n2)g, while (if we compose from right to left) α(n1)α(n2) sends it via en2g to en1(n2g),
which is the same element of E; thus α is a homomorphism N → C. (If we want to compose
from left to right we need to define α(n) : eg 7→ en−1g to get a homomorphism.) If n ∈ N
then n ∈ kerα if and only if eng = eg for all g ∈ G, and this is equivalent to en = e, so
kerα = H. To show that α is an epimorphism, let c ∈ C; then ec = eg for some g ∈ G by
transitivity, and if h ∈ H then eghg−1 = echg−1 = ehcg−1 = ecg−1 = e, so ghg−1 ∈ H
and hence g ∈ N ; thus the elements c and α(g) of C both send e to the same element, so
c = α(g) since C acts semiregularly.

Exercise 2.3. If B is a regular dessin of type (l,m, n) with N edges, what is its genus?
Are there finitely or infinitely many regular dessns of a given type and genus?

Solution. Since G acts regularly on E, all cycles of x have the same length l, so there are
N/l of them, giving N/l black vertices. Similarly, there are N/m white vertices and N/n
faces. Since there are N edges the Euler characteristic is

χ =
N

l
+
N

m
−N +

N

n
= N

(1
l

+
1
m

+
1
n
− 1
)

and so the genus is

g = 1− χ

2
= 1 +

N

2

(
1− 1

l
− 1
m
− 1
n

)
.
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If 1
l + 1

m + 1
n 6= 1 then l,m, n and g determine N uniquely. There are only finitely

many groups G of each order N , and each G has only finitely many generating pairs x, y,
so there are only finitely many corresponding regular dessins of type (l,m, n) and genus g.

If 1
l + 1

m + 1
n = 1, however, so that g = 1, the value of N is not uniquely determined,

and this argument fails. This happens when l,m and n are permutations of 2, 4, 4 or 2, 3, 6
or 3, 3, 3, and in each of these cases one can construct infinitely many regular dessins of
type (l,m, n) and genus g = 1 by first constructing an infinite regular bipartite map of this
type on C, and then forming quotients by suitable lattices Λ. (The dessin B3 in Example 3,
of type (3, 3, 3), is an example of this construction, since one can extend the bipartite map
to cover C by using copies of the basic hexagon as the tiles of a periodic tessellation.)

Exercise 2.4. Find G,C, B̃ and A if B is a path of N edges, with vertices alternately
black and white.

Solution. Successively number the edges 1, 2, . . . , N . We may assume that the vertex
incident with edge 1 is black (if not, transpose the colours). Then x = (1)(2, 3)(4, 5) . . .,
ending with (N − 1, N) or (N − 2, N − 1)(N) as N is odd or even, and y = (1, 2)(3, 4) . . .,
ending with (N−2, N−1)(N) or (N−1, N) respectively. These two permutations generate
a dihedal group DN of order 2N . One way to see this is by labelling the edges of a regular
N -gon with 1, 2, . . . , N (not in cyclic order!) so that x and y induce reflections in axes
subtending an angle π/N ; these generate the symmetry group DN of the N -gon.

The stabiliser G1 in G of the edge 1 is the subgroup 〈x〉 ∼= C2. If N is odd then
NG(G1) = G1, so C is the trivial group and B has no non-identity automorphisms. If N is
even then NG(G1) is a Klein four-group generated by x and the central involution (xy)N/2,
so C has order 2; it is generated by (xy)N/2, corresponding to the half-turn automorphism
of B.

The canonical regular cover B̃ is the bipartite map corresponding to the regular rep-
resentation of DN . This is a circuit of 2N edges separating the sphere into two faces, with
vertices alternately black and white. The subgroup A ≤ Aut B̃, such that B ∼= A\Aut B̃, is
cyclic of order 2, generated by a half-turn of B̃ about a black vertex. (This also fixes the
antipodal vertex, coloured white or black as N is odd or even.)

Exercise 3.1. Find the splitting field K for the polynomial f(x) = xn−2 ∈ Q[x], describe
GalK/Q, and find the subgroups fixing ζn and α = 21/n ∈ R.

Solution. The splitting field K is generated by the roots αk = αζkn of f , where k =
0, 1, . . . , n− 1. It therefore contains α = α0 and ζn = α1/α0. But these generate the roots
αk, so K = Q(α, ζn).

The Galois group G = GalK/Q has order |K : Q| = |K : Q(ζn)|.|Q(ζn) : Q| = nφ(n),
and it permutes the roots αk faithfully. Each g ∈ G is uniquely determined by the images
of ζn, which must be a primitive nth root of unity ζjn for some j ∈ Un, and of α, which
must be a root αk of f for some k ∈ Zn, so we can write g = gj,k. The elements g1,k

fixing ζn form a normal subgroup N of G, corresponding to the Galois extension Q(ζn) of
Q; this is cyclic of order n since g1,k ◦ g1,k′ = g1,k+k′ . The elements gj,0 fixing α form a
non-normal subgroup H of G, corresponding to the non-Galois extension Q(α) of Q; this
is isomorphic to Un since gj,0 ◦ gj′,0 = gjj′,0. The group G is a semidirect product of N by
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H, isomorphic to the group of invertible affine transformations z 7→ jz+k (j ∈ Un, k ∈ Zn)
of Zn. (This is a generalisation of Example 3 in the Galois Theory lecture, which deals
with the case n = 3.)

Exercise 3.2. Show that ∪n≥1Q(ζn) is a subfield of Q, and describe its Galois group.

Solution. Let K denote ∪n≥1Q(ζn). The fields Q(ζn) are all contained in Q, and hence
so is their union K. If α, β ∈ K then α ∈ Q(ζl) and β ∈ Q(ζm) for some l and m, so
α, β ∈ Q(ζn) where n = lcm(l,m); since Q(ζn) is a field it contains α± β, αβ and α/β (if
β 6= 0); it follows that these lie in K, which is therefore a field.

Whenever there is an inclusion Q(ζn) ⊇ Q(ζm) (for instance when m divides n), the
field Q(ζm) is invariant under Gal Q(ζn)/Q since it is a Galois extension of Q, so there is a
restriction homomorphism ρn,m : Gal Q(ζn)/Q→ Gal Q(ζm)/Q. By an argument similar
to that applied to G in the lectures, GalK/Q can be identified with the projective limit
lim←Gal Q(ζn)/Q of these groups and homomorphisms, that is, with the group

{(gn) ∈
∏
n

Gal Q(ζn)/Q | ρn,m(gn) = gm whenever Q(ζn) ⊇ Q(ζm)}

This is an abelian group, since Gal Q(ζn)/Q is isomorphic to the group Un of units mod (n),
and this is abelian. It is a quotient of G since K is a Galois extension of Q. (It is in fact the
largest abelian quotient Gab = G/G′ of G, where G′ denotes the commutator subgroup of
G; this depends on a deep theorem of Hilbert and Weber, that every finite Galois extension
of Q with an abelian Galois group is contained in some cyclotomic field Q(ζn).)

Exercise 3.3. What are the cardinalities of Q and of G?

Solution. Q is infinite since it contains Q. There are only countably many polynomials
f(x) = a0 + · · ·+ anx

n in Q[x] (finitely many for each value of
∑
i |ai|+n in N), and each

has only finitely many roots, so Q, as a union of countably many finite sets, is countable.
Thus |Q| = ℵ0.

To see that G is uncountable, consider a strictly ascending chain Q = K1 ⊂ K2 ⊂ · · ·
of fields in K, such as Kn = Q(ζ2n). For each n, the group Gn = GalKn/Q is the quotient
of Gn+1 by its normal subgroup GalKn+1/Kn, which means that each gn ∈ Gn extends
in |GalKn+1/Kn| = |Kn+1 : Kn| ways to an element gn+1 ∈ Gn+1. As in Exercise 3.2,
the field K = ∪n≥1Kn is a Galois extension of Q, and its Galois group GalK/Q is the
projective limit lim←Gn = {(gn) ∈

∏
nGn | ρn,m(gn) = gm whenever n ≥ m } of the

groups Gn and the restriction homomorphisms ρn,m : Gn → Gm where n ≥ m. There are
2ℵ0 ways of extending g1 to g2, g2 to g3, and so on, so this Galois group has cardinality
2ℵ0 . Since it is an epimorphic image of G, it follows that G has cardinality at least 2ℵ0 .
As a product of countably many finite sets, Π has cardinality at most 2ℵ0 , and hence so
has its subgroup G. Thus |G| = 2ℵ0 .

Exercise 3.4. Show that G is a closed subgroup of Π, and that Π and G are compact
Hausdorff spaces.
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Solution. If K ⊇ L in K, then the discrete topologies on GK and GL induce the discrete
topology on GK × GL, so the set of pairs (gK , gL) such that ρK,L(gK) 6= gL is open in
GK × GL. It follows that its inverse image in Π is open. This consists of all elements of
Π satisfying ρK,L(gK) 6= gL for this particular pair K and L, so the complement CK,L of
this set, consisting of all elements of Π satisfying ρK,L(gK) = gL, is closed. Now G is the
intersection of these sets CK,L for all pairs K ⊇ L in K, so G is closed.

For each K ∈ K the group GK is finite and hence compact, so Tychonoff’s Theorem
implies that Π, as a product of compact spaces, is compact. If g = (gK) and h = (hK) are
distinct elements of Π then gk 6= hK for some K ∈ K; the sets {gK} and {hK} are open
in GK , so their inverse images in Π are disjoint open sets containing g and h. Thus Π is a
Hausdorff space. As a closed subset of a compact Hausdorff space, G is also compact and
Hausdorff.

Exercise 3.5. Show that in any topological group, each open subgroup is closed, and each
closed subgroup of finite index is open.

Solution. If H is an open subgroup of a topological group G, then since multiplication is
continuous, every coset Hg of H in G is also open. Thus G \H, a union of such cosets, is
open and hence H is closed. If H is a closed subgroup of finite index in G, then G \ H,
a union of finitely many closed cosets, is closed and hence H is open. (This can fail for
closed subgroups of infinite index: consider Z as a subgroup of the additive group R, for
instance.)

Exercise 4.1. Show that θ and φ (ingredients in a covering of bipartite maps) must be
epimorphisms.

Solution. θ maps x to x′ and y to y′; since x′ and y′ generate G′, θ maps G onto G′. Now
let e0 ∈ E and let e′0 = φ(e0) ∈ E′. Any element e′ ∈ E′ has the form e′ = e′0g

′ for some
g′ ∈ G′, since G′ is transitive on E′. Since θ is onto, we have g′ = θ(g) for some g ∈ G.
Define e = e0g. Then φ(e) = φ(e0g) = φ(e0)θ(g) = e′0g

′ = e′, so e′ ∈ φ(E). Thus φ maps
E onto E′.

Exercise 4.2. Explain Example 4 (that in the case of the Fermat curve, AutX is a
semidirect product of AutB by S3) by giving a geometric description of NPSL2R(∆e).

Solution. AutB is induced by the normal inclusion of ∆e = ∆′ in the triangle group
∆ = ∆(n, n, n). The basic triangle T for ∆, with internal angles π/n, has a barycentric
subdivision into six triangles T̃ with internal angles π/2, π/3, π/2n, and the corresponding
triangle group ∆̃ = ∆(2, 3, 2n) contains ∆. The index of ∆ in ∆̃ is equal to the ratio
of the areas of their fundamental regions, and hence of the areas of T and of T̃ , namely
6. This is a normal inclusion, with ∆̃/∆ ∼= S3: for instance ∆̃ permutes the three vertex
colours in the triangulation of H associated with ∆, inducing all 3! permutations, and ∆
is the kernel of this action. The commutator subgroup ∆′ is a characteristic subgroup of
∆ (invariant under all automorphisms), so ∆e = ∆′ is normal in ∆̃. Thus ∆̃ is contained
in N(∆e) so ∆̃/∆e acts as a group of automorphisms of the Riemann surface X = ∆e\H,
with ∆/∆e

∼= AutB as a normal subgroup of index 6. One can show that N(∆e) = ∆̃, so
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that AutX = ∆̃/∆e, for instance by using areas of fundamental regions to show that ∆̃ is
a maximal Fuchsian group.

Exercise 4.3. Show that ∆[3, 2,∞] = PGL2(Z), consisting of the transformations

τ 7→ aτ + b

cτ + d
where a, b, c, d ∈ Z, ad− bc = 1,

and
τ 7→ aτ + b

cτ + d
where a, b, c, d ∈ Z, ad− bc = −1.

Solution. The transformations τ 7→ (aτ + b)/(cτ + d) with a, b, c, d ∈ Z and ad− bc = −1
transpose the upper and lower half planes, so if we compose them with complex conjugation
we get isometries of H, reversing orientation. The standard generators of ∆[3, 2,∞] are
the reflections τ 7→ −τ , τ 7→ −τ − 1 and τ 7→ 1/τ in the sides of a hyperbolic triangle T
with vertices at ζ3, i and ∞. These are visibly elements of PGL2(Z), so ∆[3, 2,∞] is a
subgroup of PGL2(Z). Products of pairs of these reflections give the generators X,Y, Z
of the modular group PSL2(Z), so ∆[3, 2,∞] contains PSL2(Z). This has index 2 in
PGL2(Z), and ∆[3, 2,∞] contains elements of the other coset, so ∆[3, 2,∞] must be the
whole of PGL2(Z).

Exercise 4.4. Draw B∞.

Solution. The vertices are the points p/q ∈ Q with q odd, coloured black or white as
p is even or odd. By regularity, the edges are the images under Γ(2) of the edge from 0
to 1. A typical element τ 7→ (aτ + b)/(cτ + d) of Γ(2), with a and d odd, b and c even,
sends 0 to b/d and 1 to (a + b)/(c + d). Now b(c + d) − d(a + b) = bc − ad = −1, so if
vertices p/q and r/s are joined by an edge then ps− qr = ±1. Conversely, if vertices p/q
and r/s satisfy ps − qr = ±1 then p and r have opposite parity (since q and s are both
odd), so transposing these vertices if necessary we may assume that p is even and r is odd.
Replacing p and q with −p and −q if necessary, we may also assumethat ps − qr = −1.
Then τ 7→ ((r − p)τ + p)/((s − q)τ + q) is an element of Γ(2), and it sends 0 to p/q and
1 to r/s, so these vertices are joined by an edge. Thus vertices p/q and r/s are joined by
an edge (which is a hyperbolic line) if and only if ps − qr = ±1. For instance, the black
vertex 0 is joined to white vertices ±1,±1/3,±1/5, . . ..

Exercise 5.1. What are the analogues of the quasiplatonic surfaces for genus g = 1?

Solution. These are the compact Riemann surfaces X uniformised by normal subgroups
K of finite index in euclidean triangle groups ∆, acting on C. Such a group ∆ = ∆(l,m, n)
must satisfy 1

l + 1
m + 1

n = 1, so the only possible types (up to permutation) are (2, 4, 4),
(2, 3, 6) and (3, 3, 3). In each case, only the translations have infinite order, so K must be
contained in the translation subgroup of ∆, which is a lattice Λ of index 4, 6 or 3 in ∆
respectively.

We can identify ∆(2, 4, 4) with the group of affine transformations z 7→ az + b of C,
where a = ±1 or ±i, and b ∈ Z[i] = {m + ni | m,n ∈ Z}; this is a semidirect product
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of a normal subgroup Λ consisting of the translations, given by a = 1, and a complement
∆0
∼= C4 fixing 0, given by b = 0. Any subgroup K ≤ Λ is normalised by Λ, since Λ

is abelian, so K is normal in ∆ if and only if it is invariant under conjugation by the
generator z 7→ iz of ∆0, which acts on Λ by rotation through π/2 about 0. This is
equivalent to K having a basis {m+ ni,−n+mi}, so K is a square lattice, similar to Λ,
with τ = i, and X = C/K is the corresponding square torus, or equivalently the elliptic
curve y2 = x(x2 − 1) (see Exercise 1.4).

The cases ∆(2, 3, 6) and ∆(3, 3, 3) are similar, with b ∈ Z[ζ6] = Z[ζ3], and a a power
of ζ6 or ζ3 respectively. In each case we find that K is a hexagonal lattice, with τ = ζ3 (or
equivalently τ = ζ6 = ζ3 + 1), corresponding to the elliptic curve y2 = x3 − 1.

Exercise 5.2. Show that ∆(3, 2, 7) has a fundamental region of area π/21, and that this
is the smallest for any triangle group acting on H.

Solution. The Gauss-Bonnet Theorem states that a hyperbolic triangle with internal
angles α, β, γ has area π−α− β − γ. If 1

l + 1
n + 1

n < 1 then by putting α = π/l, β = π/m
and γ = π/n we see that a fundamental triangle for ∆[l,m, n] has area π(1− 1

l − 1
n − 1

n ).
Two adjacent copies of T form a fundamental region for ∆(l,m, n), and this has area
2π(1− 1

l − 1
n − 1

n ). Putting l = 3, m = 2 and n = 7 we get the value π/21 for ∆(3, 2, 7).
To see that the fundamental region for any other hyperbolic triangle group ∆(l,m, n)

has area A > π/21, we may assume without loss of generality that l ≤ m ≤ n. If l ≥ 4
then A ≥ 2π(1− 1

4 − 1
4 − 1

4 ) = π/2 > π/21. If l = 3 then n ≥ 4 (otherwise l = m = n = 3
and the group is euclidean, not hyperbolic), so A ≥ 2π(1 − 1

3 − 1
3 − 1

4 ) = π/6 > π/21.
If l = 2 and m ≥ 4 then n ≥ 5 (otherwise m = n = 4 and the group is euclidean), so
A ≥ 2π(1− 1

2 − 1
4 − 1

5 ) = π/10 > π/21. If l = 2 and m = 3 then n ≥ 8 (if n ≤ 6 the group
is euclidean or spherical), so A ≥ 2π(1− 1

2 − 1
3 − 1

8 ) = π/12 > π/21. Triangle groups with
l = m = 2 are spherical, so we have dealt with all the hyperbolic cases.

(A similar but longer argument shows that ∆(3, 2, 7) has a fundamental region of least
area among all Fuchsian groups.)

Exercise 5.3. Prove that there is no Hurwitz group of genus 2.

Solution. Such a group G would have order 84(g − 1) = 84 = 22.3.7, so by Sylow’s
Theorems (for the prime p = 7) it would have n7 Sylow 7-subgroups S of order 7, where
n7 divides |G| and n7 ≡ 1 mod (7). The only solution is n7 = 1, so S is a normal
subgroup of G. By composing the natural epimorphisms ∆→ G and G→ G/S we get an
epimorphism θ : ∆ → G/S, where G/S has order 84/7 = 12. Since 7 does not divide 12,
G/S has no elements of order 7, so θ(Z) = 1. Since X3 = Y 2 = XY Z = 1 in ∆ it easily
follows that θ(X) = θ(Y ) = 1 also, so θ is not an epimorphism and G cannot exist.

Exercise 5.4. How many regular bipartite maps of type (5, 5, 5) have automorphism
group A5?

Solution. Let X , Y and Z be conjugacy classes of elements of order 5 in G = A5. There
are two such classes, each with 12 elements, so there are 23 = 8 possible choices for X ,
Y and Z. For each choice, we can use Proposition 5.3 (the character formula) to count
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solutions of xyz = 1 in G where x ∈ X , y ∈ Y, z ∈ Z, and then summing over the eight
choices we get the total number of triples x, y, z of elements of order 5 in G with xyz = 1.

For each choice of conjugacy classes,

|X |.|Y|.|Z|
|G| =

123

60
.

If we sum the values of
∑
χ χ(x)χ(y)χ(z)/χ(1) over all eight choices, the first character

χ contributes 8 (namely 1 for each choice), the second and third each contribute (λ3 +
3λ2µ+ 3λµ2 + µ3)/3 = (λ+ µ)3/3 = 1/3, the fourth contributes −2 (namely (−1)3/4 for
each choice), and the fifth contributes 0. It follows that the total number of triples is

123

60
.
(

8 +
1
3

+
1
3
− 2 + 0

)
= 192.

Such a triple must generate eitherG or a cyclic groupH ∼= C5. There are six subgroups
H ∼= C5 in G (the Sylow 5-subgroups), each generated by 4.3 = 12 triples, so 72 triples do
not generate G. The remaining 192− 72 = 120 triples do, and since |AutG| = |S5| = 120
they form a single orbit under automorphisms. It follows that ∆(5, 5, 5) has a single normal
subgroup K with quotient A5, so we obtain a single regular bipartite map of type (5, 5, 5)
with AutB ∼= A5. It is represented by

X 7→ x = (1, 2, 3, 4, 5), Y 7→ y = (1, 3, 4, 2, 5), Z 7→ z = (1, 4, 2, 3, 5),

(all conjugate in A5), and by Exercise 2.3 it has genus 13.

Exercise 6.1. Can you get a regular embedding of K7 from the bipartite map representing
the Fano plane P 2(F2) on the torus? Can you get two of them?

Solution. The bipartite map B of genus 1 representing the Fano plane has seven black
vertices and seven white vertices, corresponding to the points and lines of the Fano plane,
with edges representing incident point-line pairs. It is a quotient of the universal bipartite
map of type (3, 3, 3) by a torsion-free normal subgroup K of index 21 in the triangle group
∆(3, 3, 3). There are seven hexagonal faces in B, and the dual map (with a vertex in each
face of B, and edges between vertices in adjacent faces) is a regular embeddingM of K7 in
a torus. This triangular map corresponds to the normal inclusion of K in the triangle group
∆(6, 2, 3), which contains ∆(3, 3, 3) with index 2, with AutM∼= ∆(6, 2, 3)/K ∼= AGL1(7).

The mirror image of B (corresponding to a second subgroupK of index 21 in ∆(3, 3, 3))
gives another regular embedding of K7, the mirror image ofM, which is not isomorphic as
an oriented map to M. Since K7 has φ(n− 1)/e = φ(6)/1 = 2 regular embeddings, these
are the only ones. They can be obtained as mapsM(α) by taking the vertex set to be the
field F7, and using the generator α = 3 or 5 of the multiplicative group F ∗7 = F7 \ {0} to
define the rotation v + 1, v + α, v + α2, . . . , v + α5 of neighbours around each vertex v.
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