Lecture 10

by Prof. Jürgen Wolfart

notes by Tuomas Puurtinen

4 Moduli Fields and Fields of Definition

"Existence of Belyi function $\beta \Rightarrow X$ is defined over $\overline{\mathbb{Q}}$."

K is a field of definition for the compact Riemann surface X iff X is isomorphic to a smooth projective algebraic curve $\subset \mathbb{P}^N(\mathbb{C})$ given by equations $p_i(x_0, \ldots, x_N) = 0$, all $p_i \in K[x_0, \ldots, x_N]$. If K is a field of definition, then $\mathbb{C} \supset L \supset K$ is a field of definition. Is there a minimal field of definition? Is it in $\overline{\mathbb{Q}}$?

Let

 $\underline{G}_{\mathbb{C}} :=$ group of field automorphisms of \mathbb{C} .

Suppose X to be defined over K by equations $p_i(x_0, \ldots, x_N) = 0$, take $\sigma \in \underline{\underline{G}}_{\mathbb{C}}$, let X^{σ} be defined by the equations $p_i^{\sigma}(x_0, \ldots, x_N) = 0$ (apply σ to all coefficients of all p_i) \Leftrightarrow

$$\{ \left[\sigma(x_0), \ldots, \sigma(x_N) \right] \mid [x_0, \ldots, x_N] \in X \} =: X^{\sigma}.$$

This is again a smooth curve!

By the same reason

$$\begin{array}{ccc} X & & X^{\sigma} \\ & & & & \downarrow^{\beta^{\sigma}} \\ \hat{\mathbb{C}} & & \cong \mathbb{P}^{1}(\mathbb{C}) \end{array}$$

commutes. Here β^{σ} is defined by applying σ to the coefficients of β , and it remains a Belyi function on X^{σ} , because vanishing of derivatives is preserved under σ , and $\sigma(0) = 0$, $\sigma(1) = 1$, $\sigma(\infty) = \infty$. The list of all multiplicities of β is preserved under σ and degree of β equals to degree of β^{σ} . This implies that σ maps the dessin D for β a dessin D^{σ} of the same type for β^{σ} on X^{σ} . Now $\underline{G}_{\mathbb{C}}$ acts on dessins of a given type and with a given no. of edges! Finite orbits \Rightarrow

Theorem 4.1 a) The subgroup $\underline{\underline{G}}(D) := \{ \sigma \in \underline{\underline{G}}_{\mathbb{C}} | D \cong D^{\sigma} \}$ is of finite index in $\underline{\underline{G}}_{\mathbb{C}}$.

b) $\sigma \in \underline{\underline{G}}(D) \Leftrightarrow$ there exist (biholomorphic!) isomorphisms $f_{\sigma} : X \to X^{\sigma}$ for which

commutes with the respective Belyi functions.

c) The "moduli field" $M(D) := \{ \zeta \in \mathbb{C} \mid \sigma(\zeta) = \zeta \ \forall \sigma \in \underline{G}(D) \}$ has finite degree $[M(D) : \mathbb{Q}] \Rightarrow$ is a numberfield. (Reason: all $\zeta \in M(D)$ have a finite orbit under $\underline{G}_{\mathbb{C}}$, length of orbit is bounded by $(\underline{G}_{\mathbb{C}} : \underline{G}(D)) \Rightarrow [M(D) : \mathbb{Q}] \leq (\underline{G}_{\mathbb{C}} : \underline{G}(D)).$)

Consequence: Also $\underline{\underline{G}}(X) := \{ \sigma \in \underline{\underline{G}}_{\mathbb{C}} \mid \exists \text{ isomorph. } f_{\sigma} : X \to X^{\sigma} \}$ and it follows that the corresponding fixed field M(X) of $\underline{\underline{G}}(X)$ in $\subseteq M(D)$, and therefore we have again a number field.

Theorem 4.2 M(X) depends only on the isomorphism class of X and is contained in any field of definition for X (analoguous for $M(D) \subset$ field of definitions for X and β).

Suppose $X \cong X'$, i.e. there is an isomorphism $h: X \to X'$ and suppose that $\sigma \in \underline{\underline{G}}(X)$, i.e. there is an isomorphism $f_{\sigma}: X \to X^{\sigma}$. We have an isomorphism $h^{\sigma}: X^{\sigma} \to X'^{\sigma}$ and we can contruct an isomorphism to make the diagram

commute. $h^{\sigma} \circ f_{\sigma} \circ h^{-1}$ gives the isomorphism we are looking for $\Rightarrow \sigma \in \underline{\underline{G}}(X')$ \Rightarrow

$$\underline{\underline{G}}(X) \cong \underline{\underline{G}}(X') \Rightarrow \text{ claim.}$$

Theorem 4.3 M(X) is a field of definition for X if g(X) = 0 or 1.

Proof. $g = 0 \Leftrightarrow X \cong \hat{\mathbb{C}} \cong \mathbb{P}^1(\mathbb{C})$, defined $/\mathbb{Q}$.

 $g(X) = 1 \Leftrightarrow X \cong \Lambda \setminus \mathbb{C}, \Lambda = \mathbb{Z} \oplus \mathbb{Z} \tau \ (\tau \in \mathbb{H}). X \text{ defined } /\mathbb{Q}(g_2(\tau), g_3(\tau)) \supseteq \mathbb{Q}(j(\tau)), \text{ so we see that } X \text{ can be defined even over } \mathbb{Q}(j(\tau)). X^{\sigma} \text{ defined } /\mathbb{Q}(\sigma(g_2(\tau)), \sigma(g_3(\tau))), \text{ even over } \mathbb{Q}(\sigma(j(\tau))), \text{ where } \sigma \in \underline{G}_{\mathbb{C}}. \text{ So } X \cong X^{\sigma} \Leftrightarrow \sigma(j(\tau)) = j(\tau). M(X) \text{ is generated by } j(\tau) \text{ and } \mathbb{Q}(j(\tau)) \text{ is a field of definition.}$

<u>But:</u> in high genera there are counter examples, where X cannot be defined over M(X). (Earle 1969, Shimura, Dèbes/Emsalem, Fuertes/Gonzalez).

Example by Earle in g = 2, $\zeta = \zeta_3 = e^{\frac{2\pi i}{3}}$

$$X : y^{2} = x(x - \zeta)(x + \zeta)(x - \zeta^{2}t)(x + \frac{\zeta^{2}}{t})$$

defined over $\mathbb{Q}(\zeta)$, and where $t \in \mathbb{Q}, t \neq 0, 1, t > 0$.

- 1. X cannot by defined over \mathbb{Q} . Note that point pairs $(\infty, \infty), (0, 0), (\zeta, 0), (-\zeta, 0), (\zeta^2 t, 0), (-\frac{\zeta^2}{t}, 0)$ are "intrinsic", also their image points in $\mathbb{P}^1(\mathbb{C})$ under $(x, y) \mapsto x$, upto $\mathrm{PSL}_2 \mathbb{C}$ -transformations. If X can be defined over \mathbb{Q} , then there is an anticonformal automorphism of X, permuting the critical points on $\mathbb{P}^1(\mathbb{C})$: doesn't exist (by calculation of cross-ratios)!
- 2. $M(X) = \mathbb{Q} = \mathbb{R} \cap \mathbb{Q}(\zeta), X \cong \overline{X}$, i.e. there is a holomorphic isomorphism $X \to \overline{X}$. There is an anticonformal mapping $(x, y) \mapsto (-\frac{1}{\overline{x}}, \frac{i\overline{y}}{\overline{x}^3})$, which is in fact an anticonformal automorphism (of order 4).

Theorem 4.4 If $M(X) \in \mathbb{Q}$, then X can be defined over a number field. (Weil, J.W., B. Köck)

<u>Idea</u>: Any field of definition K for X is finitely generated over M(X) because for a model of X defined over K

$$\sigma|_K = \mathrm{id} \Rightarrow X = X^{\sigma}.$$

Suppose for simplicity $K = M(X)(\xi)$ where ξ is transcendential, then there exists $\sigma \in \underline{G}_{\mathbb{C}}$, $\sigma|_{M(X)} = \operatorname{id}_{M(X)}$, $\sigma(\xi) \mapsto \eta$ (η any other transcendential number). And because $\sigma \in \underline{G}(X)$, there exists $f_{\sigma} : X \to X^{\sigma}$. Equations $p_i(x) = 0 \rightsquigarrow p_i^{\sigma}(x) = 0$ coefficients rational in $\xi \rightsquigarrow$ coefficients rational in η . Now try to insert in f_{σ} instead of η some algebraic $\alpha \in \overline{\mathbb{Q}}$, and it can be shown that f_{σ} is still an isomorphism for infinitely many $\alpha \in \overline{\mathbb{Q}}$. This gives the claim.

Theorem 4.5 (Weil) Let X be defined over a finite extension L of M := M(X). Then X can be defined over M itself if and only if $\forall \sigma \in \text{Gal } \overline{M}/M$ there is an isomorphism $f_{\sigma} : X \to X^{\sigma}$ such that $\forall \sigma, \tau \in \text{Gal } \overline{M}/M$ we have

$$f_{\sigma\tau} = f_{\sigma}^{\tau} \circ f_{\tau}.$$

Analoguous statement holds for M(D) and the field of definition for X and β , with diagram

commuting.

Consequence: If Aut $X = {\text{id}}$, then X is defined over M(X). $\Leftarrow f_{\sigma}$ is unique (generic case for g > 2).

Theorem 4.6 (Coombes/Harbater, Dèbes/Emsalem, J.W., B. Köck) Quasiplatonic curve X can be defined /M(X).

<u>Idea</u>: The canonical projection $X \to \operatorname{Aut} X \setminus X \cong \mathbb{P}^1(\mathbb{C})$ is a Belyi function, assume that the critical points are $0, 1, \infty$. Let D be the corresponding (regular) dessin on $X, M(D) \subset \overline{\mathbb{Q}}$. Prove first that X, β are defined /M(D). Let $r \neq 0, 1, r \in M(D) \subset \mathbb{C} \subset \widehat{\mathbb{C}}$, fix one $x \in \beta^{-1}(r), \sigma \in \operatorname{Gal} \overline{\mathbb{Q}}/M(D)$ to make the following diagram

commute. $\sigma(r) = r \Rightarrow \sigma(x) \in (\beta^{\sigma})^{-1}(r)$, choose f_{σ} so that $f_{\sigma}(x) = \sigma(x)$ \Rightarrow unique choice for f_{σ} and it has been shown that Weil's conditions are satisfied! The proof that X can be defined even over $M(X) \subseteq M(D)$ needs some additional arguments.

4.1 Problem

- 7 Show that the elliptic curve can be defined over $\mathbb{Q}(j(\tau)) \subseteq \mathbb{Q}(g_2(\tau), g_3(\tau))$.
- 8 Suppose X defined $/\overline{\mathbb{Q}}$, g(X) > 1. (Aut X finite \Rightarrow) Show that all automorphisms $f: X \to X$ are also defined $/\overline{\mathbb{Q}}$.