4 Moduli Fields and Fields of Definition

"Existence of Belyi function $\beta \Rightarrow X$ is defined over $\bar{\mathbb{Q}}$.

K is a field of definition for the compact Riemann surface X iff X is isomorphic to a smooth projective algebraic curve $\subset \mathbb{P}^N(\mathbb{C})$ given by equations $p_i(x_0, \ldots, x_N) = 0$, all $p_i \in K[x_0, \ldots, x_N]$. If K is a field of definition, then $\mathbb{C} \supset L \supset K$ is a field of definition. Is there a minimal field of definition? Is it in $\bar{\mathbb{Q}}$?

Let $G_C := \text{group of field automorphisms of } \mathbb{C}$.

Suppose X to be defined over K by equations $p_i(x_0, \ldots, x_N) = 0$, take $\sigma \in G_C$, let X^σ be defined by the equations $p_i^\sigma(x_0, \ldots, x_N) = 0$ (apply σ to all coefficients of all p_i) \iff

$$\{ [\sigma(x_0), \ldots, \sigma(x_N)] | [x_0, \ldots, x_N] \in X \} =: X^\sigma.$$

This is again a smooth curve!

By the same reason

$$\begin{array}{ccc}
X & \xrightarrow{\sim} & X^\sigma \\
\downarrow{\beta} & & \downarrow{\beta^\sigma} \\
\mathbb{C} & \xrightarrow{\cong} & \mathbb{P}^1(\mathbb{C})
\end{array}$$

commutes. Here β^σ is defined by applying σ to the coefficients of β, and it remains a Belyi function on X^σ, because vanishing of derivatives is preserved under σ, and $\sigma(0) = 0$, $\sigma(1) = 1$, $\sigma(\infty) = \infty$. The list of all multiplicities of β is preserved under σ and degree of β equals to degree of β^σ. This implies that σ maps the dessin D for β a dessin D^σ of the same type for β^σ on X^σ.

Now G_C acts on dessins of a given type and with a given no. of edges! Finite orbits \Rightarrow

Theorem 4.1
a) The subgroup $G(D) := \{ \sigma \in G_C | D \cong D^\sigma \}$ is of finite index in G_C.
b) \(\sigma \in \mathbb{G}(D) \iff \) there exist (biholomorphic!) isomorphisms \(f_{\sigma} : X \to X^\sigma \)
for which
\[
\begin{array}{ccc}
X & \xrightarrow{f_{\sigma}} & X^\sigma \\
\downarrow{\beta} & & \uparrow{\beta^\sigma} \\
\hat{\mathbb{C}}
\end{array}
\]
commutes with the respective Belyi functions.

c) The "moduli field" \(M(D) := \{ \zeta \in \mathbb{C} | \sigma(\zeta) = \zeta \ \forall \ \sigma \in \mathbb{G}(D) \} \) has finite
degree \([M(D) : \mathbb{Q}] \Rightarrow \) is a numberfield. (Reason: all \(\zeta \in M(D) \) have
a finite orbit under \(\mathbb{G}_C \), length of orbit is bounded by \((\mathbb{G}_C : \mathbb{G}(D)) \Rightarrow \)
\([M(D) : \mathbb{Q}] \leq (\mathbb{G}_C : \mathbb{G}(D)).\)

Consequence: Also \(\mathbb{G}(X) := \{ \sigma \in \mathbb{G}_C | \exists \ \text{isomorph.} \ f_{\sigma} : X \to X^\sigma \} \) and
it follows that the corresponding fixed field \(M(X) \) of \(\mathbb{G}(X) \) in \(\subseteq M(D) \), and
therefore we have again a number field.

Theorem 4.2 \(M(X) \) depends only on the isomorphism class of \(X \) and is
contained in any field of definition for \(X \) (analogous for \(M(D) \subset \text{field of}
definitions for } X \) and \(\beta \)).

Suppose \(X \cong X' \), i.e. there is an isomorphism \(h : X \to X' \) and suppose
that \(\sigma \in \mathbb{G}(X) \), i.e. there is an isomorphism \(f_{\sigma} : X \to X^\sigma \). We have an
isomorphism \(h^\sigma : X^\sigma \to X'^{\sigma} \) and we can contruct an isomorphism to make
the diagram
\[
\begin{array}{ccc}
X & \xrightarrow{h} & X' \\
\downarrow{f_{\sigma}} & & \uparrow{h^\sigma} \\
X^\sigma & \xrightarrow{h^\sigma} & X'^{\sigma}
\end{array}
\]
commute. \(h^\sigma \circ f_{\sigma} \circ h^{-1} \) gives the isomorphism we are looking for \(\Rightarrow \sigma \in \mathbb{G}(X') \)
\(\Rightarrow \)
\(\mathbb{G}(X) \cong \mathbb{G}(X') \Rightarrow \) claim.

Theorem 4.3 \(M(X) \) is a field of definition for \(X \) if \(g(X) = 0 \) or 1.

Proof. \(g = 0 \iff X \cong \hat{\mathbb{C}} \cong \mathbb{P}^1(\mathbb{C}), \) defined \(/\mathbb{Q}.
\(g(X) = 1 \iff X \cong \Lambda \setminus \mathbb{C}, \Lambda = \mathbb{Z} \oplus \mathbb{Z}\tau \ (\tau \in \mathbb{H}). \) X defined \(/\mathbb{Q}(g_2(\tau), g_3(\tau)) \supseteq \mathbb{Q}(j(\tau)), \) so we see that \(X \) can be defined even over \(\mathbb{Q}(j(\tau)). \) \(X^\sigma \) defined
\(/\mathbb{Q}(\sigma(g_2(\tau)), \sigma(g_3(\tau))), \) even over \(\mathbb{Q}(\sigma(j(\tau))), \) where \(\sigma \in \mathbb{G}_C. \) So \(X \cong X^\sigma \iff \sigma(j(\tau)) = j(\tau). \) \(M(X) \) is generated by \(j(\tau) \) and \(\mathbb{Q}(j(\tau)) \) is a field of definition. \[\square\]
But: in high genera there are counter examples, where X cannot be defined over $M(X)$. (Earle 1969, Shimura, Dèbes/Emsalem, Fuertes/Gonzalez).

Example by Earle in $g = 2$, $\zeta = e^{2\pi i/3}:
\begin{align*}
X : y^2 = x(x - \zeta)(x + \zeta)(x - \zeta^2 t)(x + \frac{\zeta^2}{t})
\end{align*}
defined over $\mathbb{Q}(\zeta)$, and where $t \in \mathbb{Q}$, $t \neq 0, 1, t > 0$.

1. X cannot be defined over \mathbb{Q}. Note that point pairs $(\infty, \infty), (0, 0), (-\zeta, 0), (\zeta^2 t, 0), (-\frac{\zeta^2}{t}, 0)$ are "intrinsic", also their image points in $\mathbb{P}^1(\mathbb{C})$ under $(x, y) \mapsto x$, up to $\text{PSL}_2 \mathbb{C}$-transformations. If X can be defined over \mathbb{Q}, then there is an anticonformal automorphism of X, permuting the critical points on $\mathbb{P}^1(\mathbb{C})$: doesn’t exist (by calculation of cross-ratios)!

2. $M(X) = \mathbb{Q} = \mathbb{R} \cap \mathbb{Q}(\zeta)$, $X \cong \bar{X}$, i.e. there is a holomorphic isomorphism $X \to \bar{X}$. There is an anticonformal mapping $(x, y) \mapsto (-\frac{1}{x}, \frac{y}{x^3})$, which is in fact an anticonformal automorphism (of order 4).

Theorem 4.4 If $M(X) \in \bar{\mathbb{Q}}$, then X can be defined over a number field. (Weil, J.W., B. Köck)

Idea: Any field of definition K for X is finitely generated over $M(X)$ because for a model of X defined over K
\[\sigma|_K = \text{id} \Rightarrow X = X^\sigma.\]

Suppose for simplicity $K = M(X)(\xi)$ where ξ is transcendental, then there exists $\sigma \in G_{\infty}$, $\sigma|_{M(X)} = \text{id}_{M(X)}$, $\sigma(\xi) \mapsto \eta$ (η any other transcendental number). And because $\sigma \in G(X)$, there exists $f_\sigma : X \to X^\sigma$. Equations $p_i(x) = 0 \sim p_i^\sigma(x) = 0$ coefficients rational in $\xi \sim \eta$. Now try to insert in f_σ instead of η some algebraic $\alpha \in \bar{\mathbb{Q}}$, and it can be shown that f_σ is still an isomorphism for infinitely many $\alpha \in \bar{\mathbb{Q}}$. This gives the claim.

Theorem 4.5 (Weil) Let X be defined over a finite extension L of $M := M(X)$. Then X can be defined over M itself if and only if $\forall \sigma \in \text{Gal } \bar{M}/M$ there is an isomorphism $f_\sigma : X \to X^\sigma$ such that $\forall \sigma, \tau \in \text{Gal } \bar{M}/M$ we have
\[f_{\sigma \tau} = f^\tau \circ f_\sigma.\]
Analogous statement holds for \(M(D) \) and the field of definition for \(X \) and \(\beta \), with diagram

\[
\begin{array}{ccc}
X & \stackrel{f_\sigma}{\longrightarrow} & X^\sigma \\
\beta & \downarrow & \beta^\sigma \\
& \mathbb{P}^1(\mathbb{C}) & \\
\end{array}
\]

commuting.

Consequence: If \(\text{Aut} \ X = \{\text{id}\} \), then \(X \) is defined over \(M(X) \). \(\Leftarrow \) \(f_\sigma \) is unique (generic case for \(g > 2 \)).

Theorem 4.6 (Coombes/Harbater, Dèbes/Emsalem, J.W., B. Köck)

Quasiplatonic curve \(X \) can be defined over \(M(X) \).

Idea: The canonical projection \(X \to \text{Aut} \ X \setminus X \cong \mathbb{P}^1(\mathbb{C}) \) is a Belyi function, assume that the critical points are 0, 1, \(\infty \). Let \(D \) be the corresponding (regular) dessin on \(X \), \(M(D) \subset \hat{\mathbb{Q}} \). Prove first that \(X, \beta \) are defined over \(M(D) \).

Let \(r \neq 0, 1, r \in M(D) \subset \mathbb{C} \subset \hat{\mathbb{C}} \), fix one \(x \in \beta^{-1}(r), \sigma \in \text{Gal} \ \hat{\mathbb{Q}}/M(D) \) to make the following diagram commute. \(\sigma(r) = r \Rightarrow \sigma(x) \in (\beta^\sigma)^{-1}(r) \), choose \(f_\sigma \) so that \(f_\sigma(x) = \sigma(x) \Rightarrow \) unique choice for \(f_\sigma \) and it has been shown that Weil’s conditions are satisfied! The proof that \(X \) can be defined even over \(M(X) \subseteq M(D) \) needs some additional arguments.

4.1 Problem

7 Show that the elliptic curve can be defined over \(\mathbb{Q}(j(\tau)) \subseteq \mathbb{Q}(g_2(\tau), g_3(\tau)) \).

8 Suppose \(X \) defined over \(\overline{\mathbb{Q}} \), \(g(X) > 1 \). (\(\text{Aut} \ X \) finite \(\Rightarrow \)) Show that all automorphisms \(f : X \to X \) are also defined over \(\overline{\mathbb{Q}} \).