
Lecture 10
by Prof. Jürgen Wolfart

notes by Tuomas Puurtinen

4 Moduli Fields and Fields of Definition
”Existence of Belyi function β ⇒ X is defined over Q̄.”

K is a field of definition for the compact Riemann surface X iff X is iso-
morphic to a smooth projective algebraic curve ⊂ PN(C) given by equations
pi(x0, . . . , xN) = 0, all pi ∈ K[x0, . . . , xN ]. If K is a field of definition, then
C ⊃ L ⊃ K is a field of definition. Is there a minimal field of definition? Is
it in Q̄?

Let
GC := group of field automorphisms of C.

Suppose X to be defined over K by equations pi(x0, . . . , xN) = 0, take σ ∈
GC, let Xσ be defined by the equations pσ

i (x0, . . . , xN) = 0 (apply σ to all
coefficients of all pi) ⇔

{ [σ(x0), . . . , σ(xN)] | [x0, . . . , xN ] ∈ X } =: Xσ.

This is again a smooth curve!
By the same reason

X

β
��

///o/o/o/o Xσ

βσ

��

Ĉ
∼= // P1(C)

commutes. Here βσ is defined by applying σ to the coefficients of β, and it
remains a Belyi function on Xσ, because vanishing of derivatives is preserved
under σ, and σ(0) = 0, σ(1) = 1, σ(∞) = ∞. The list of all multiplicities of
β is preserved under σ and degree of β equals to degree of βσ. This implies
that σ maps the dessin D for β a dessin Dσ of the same type for βσ on Xσ.
Now GC acts on dessins of a given type and with a given no. of edges! Finite
orbits ⇒

Theorem 4.1 a) The subgroup G(D) := {σ ∈ GC |D
∼= Dσ } is of finite

index in GC.
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b) σ ∈ G(D) ⇔ there exist (biholomorphic!) isomorphisms fσ : X → Xσ

for which

X

β
��

fσ // Xσ

βσ
~~||

||
||

||

Ĉ
commutes with the respective Belyi functions.

c) The ”moduli field” M(D) := { ζ ∈ C |σ(ζ) = ζ ∀σ ∈ G(D) } has finite
degree [M(D) : Q] ⇒ is a numberfield. (Reason: all ζ ∈ M(D) have
a finite orbit under GC, length of orbit is bounded by (GC : G(D)) ⇒
[M(D) : Q] ≤ (GC : G(D)).)

Consequence: Also G(X) := {σ ∈ GC | ∃ isomorph. fσ : X → Xσ } and
it follows that the corresponding fixed field M(X) of G(X) in ⊆ M(D), and
therefore we have again a number field.

Theorem 4.2 M(X) depends only on the isomorphism class of X and is
contained in any field of definition for X (analoguous for M(D) ⊂ field of
definitions for X and β).

Suppose X ∼= X ′, i.e. there is an isomorphism h : X → X ′ and suppose
that σ ∈ G(X), i.e. there is an isomorphism fσ : X → Xσ. We have an
isomorphism hσ : Xσ → X ′σ and we can contruct an isomorphism to make
the diagram

X
h //

fσ

��

X ′

��
Xσ hσ

// X ′σ

commute. hσ◦fσ◦h−1 gives the isomorphism we are looking for⇒ σ ∈ G(X ′)
⇒

G(X) ∼= G(X ′) ⇒ claim.

Theorem 4.3 M(X) is a field of definition for X if g(X) = 0 or 1.

Proof. g = 0 ⇔ X ∼= Ĉ ∼= P1(C), defined /Q.
g(X) = 1 ⇔ X ∼= Λ\C, Λ = Z⊕Zτ (τ ∈ H). X defined /Q(g2(τ), g3(τ)) ⊇

Q(j(τ)), so we see that X can be defined even over Q(j(τ)). Xσ defined
/Q(σ(g2(τ)), σ(g3(τ))), even over Q(σ(j(τ))), where σ ∈ GC. So X ∼= Xσ ⇔
σ(j(τ)) = j(τ). M(X) is generated by j(τ) and Q(j(τ)) is a field of defini-
tion. �
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But: in high genera there are counter examples, where X cannot be defi-
ned over M(X). (Earle 1969, Shimura, Dèbes/Emsalem, Fuertes/Gonzalez).

Example by Earle in g = 2, ζ = ζ3 = e
2πi
3

X : y2 = x(x− ζ)(x + ζ)(x− ζ2t)(x +
ζ2

t
)

defined over Q(ζ), and where t ∈ Q, t 6= 0, 1, t > 0.

1. X cannot by defined over Q. Note that point pairs (∞,∞), (0, 0),
(ζ, 0), (−ζ, 0),(ζ2t, 0), (− ζ2

t
, 0) are ”intrinsic”, also their image points in

P1(C) under (x, y) 7→ x, upto PSL2 C-transformations. If X can be
defined over Q, then there is an anticonformal automorphism of X,
permuting the critical points on P1(C): doesn’t exist (by calculation of
cross-ratios)!

2. M(X) = Q = R∩Q(ζ), X ∼= X̄, i.e. there is a holomorphic isomorphism
X → X̄. There is an anticonformal mapping (x, y) 7→ (− 1

x̄
, iȳ

x̄3 ), which
is in fact an anticonformal automorphism (of order 4).

Theorem 4.4 If M(X) ∈ Q̄, then X can be defined over a number field.
(Weil, J.W., B. Köck)

Idea: Any field of definition K for X is finitely generated over M(X)
because for a model of X defined over K

σ|K = id ⇒ X = Xσ.

Suppose for simplicity K = M(X)(ξ) where ξ is transcendential, then there
exists σ ∈ GC, σ|M(X) = idM(X), σ(ξ) 7→ η (η any other transcendential
number). And because σ ∈ G(X), there exists fσ : X → Xσ. Equations
pi(x) = 0  pσ

i (x) = 0 coefficients rational in ξ  coefficients rational in
η. Now try to insert in fσ instead of η some algebraic α ∈ Q̄, and it can be
shown that fσ is still an isomorphism for infinitely many α ∈ Q̄. This gives
the claim.

Theorem 4.5 (Weil) Let X be defined over a finite extension L of M :=
M(X). Then X can be defined over M itself if and only if ∀σ ∈ Gal M̄/M
there is an isomorphism fσ : X → Xσ such that ∀σ, τ ∈ Gal M̄/M we have

fστ = f τ
σ ◦ fτ .
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Analoguous statement holds for M(D) and the field of definition for X
and β, with diagram

X

β !!CC
CC

CC
CC

C
fσ // Xσ

βσ
}}zz

zz
zz

zz
z

P1(C)

commuting.
Consequence: If Aut X = {id}, then X is defined over M(X). ⇐ fσ is

unique (generic case for g > 2).

Theorem 4.6 (Coombes/Harbater, Dèbes/Emsalem, J.W., B. Köck)
Quasiplatonic curve X can be defined /M(X).

Idea: The canonical projection X → Aut X\X ∼= P1(C) is a Belyi func-
tion, assume that the critical points are 0, 1,∞. Let D be the corresponding
(regular) dessin on X, M(D) ⊂ Q̄. Prove first that X, β are defined /M(D).
Let r 6= 0, 1, r ∈ M(D) ⊂ C ⊂ Ĉ, fix one x ∈ β−1(r), σ ∈ Gal Q̄/M(D) to
make the following diagram

x � 22n

��.
..

..
..

..
..

..
..

. X

β

��/
//

//
//

//
//

//
//

// Xσ

βσ

����
��
��
��
��
��
��
�

σ(x)

r Ĉ

commute. σ(r) = r ⇒ σ(x) ∈ (βσ)−1(r), choose fσ so that fσ(x) = σ(x)
⇒ unique choice for fσ and it has been shown that Weil’s conditions are
satisfied! The proof that X can be defined even over M(X) ⊆ M(D) needs
some additional arguments.

4.1 Problem

7 Show that the elliptic curve can be defined over Q(j(τ)) ⊆ Q(g2(τ), g3(τ)).

8 Suppose X defined /Q̄, g(X) > 1. (Aut X finite ⇒) Show that all
automorphisms f : X → X are also defined /Q̄.
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