1.3 More on Tori

Recall the correspondence between the isomorphism classes of elliptic curves and the orbits of \(\Gamma \) on \(\mathbb{H} \).

We would like a “nice” function on \(\mathbb{H} \), taking a single value on each orbit of \(\Gamma \), and different values on different orbits. We can regard \(g_2 \), \(g_3 \) and \(\Delta = g_3^2 - 27g_2^3 \) as functions of \(\tau \in \mathbb{H} \) by evaluating them for the lattice \(\Lambda = \Lambda(1, \tau) \) with \(\omega_2 = \tau \) and \(\omega_1 = 1 \), and with modulus \(\tau \). Difficulty: if replace \(\Lambda \) with a similar lattice \(\Lambda' = \mu \Lambda \) then \(g_2, g_3 \) are multiplied by \(\mu^{-4} \) and \(\mu^{-6} \), and \(\Delta \) by \(\mu^{-12} \). But if we define

\[
J(\tau) = \frac{g_2(\tau)^3}{\Delta(\tau)} = \frac{g_2(\tau)^3}{g_2(\tau)^3 - 27g_3(\tau)^2}
\]

then the powers of \(\mu \) cancel, so \(J(\tau) \) depends only on the similarity class of \(\Lambda \). Also, \(g_2, g_3 \) and hence \(J \) are independent of the basis of \(\Lambda \). So \(J \) is invariant under the action of \(\Gamma \) on \(\mathbb{H} \), i.e.

\[
J(T(\tau)) = J(\tau)
\]

for all \(\tau \in \mathbb{H} \) and \(T \in \Gamma \). \(J \) is the elliptic modular function (but not an elliptic function!). \(J \) is holomorphic on \(\mathbb{H} \), and it induces a bijection between the orbits of \(\Gamma \) on \(\mathbb{H} \) and complex numbers, i.e. \(\Gamma \backslash \mathbb{H} \leftrightarrow \mathbb{C} \).

Exercise 1.4 Evaluate \(J(\tau) \) at \(\tau = i \) and \(\tau = \omega = e^{2\pi i/3} \) and find the corresponding elliptic curves.

1.4 Alternative Approach to Finding a ”Nice” Function

Put each elliptic curve \(E \) into Legendre form

\[
y^2 = x(x - 1)(x - \lambda)
\]

where \(\lambda \in \mathbb{C} \backslash \{0, 1\} \) and regard \(\lambda \) as a function of the modulus \(\tau \) corresponding to \(E \). The difficulty here is that the Legendre form for \(E \) is not quite unique. This is because there are 6 ways of sending two of the three roots of \(p(x) \) to 0 and 1, with the third going to \(\lambda \), by an affine transformation.
For instance, if we replace x with $1 - x$ (transposing the roots 0 and 1) the right-hand side of the Legendre equation becomes

$$(1 - x)(-x)(1 - x - \lambda) = -x(x - 1)(x - (1 - \lambda)).$$

If we also replace y with iy the left-hand side becomes $-y^2$, so we have an isomorphic elliptic curve with Legendre form

$$y^2 = x(x - 1)(x - (1 - \lambda)).$$

Thus λ is replaced with $1 - \lambda$. Another substitution (find it!) replaces λ with $\frac{1}{\lambda}$. These two substitutions generate a group isomorphic to S_3 (corresponding to permuting the three roots e_1, e_2 and e_3 of $p(x)$), and the six permutations give rise to six values

$$\lambda, 1 - \lambda, \frac{1}{\lambda}, \frac{1}{1 - \lambda}, \frac{\lambda}{1 - \lambda}, \frac{\lambda - 1}{\lambda}.$$

One can define λ uniquely as a function of τ by noting that $\wp'(z) = 0$ at $z = \frac{\omega_1}{2}$ and $\frac{\omega_1 + \omega_2}{2}$ (why?), so the differential equation

$$(\wp')^2 = p(\wp)$$

implies that the roots e_1, e_2 and e_3 of $p(x)$ are at $x = \wp(\frac{\omega_1}{2}), \wp(\frac{\omega_2}{2})$ and $\wp(\frac{\omega_1 + \omega_2}{2})$.

An affine transformation $L : x \mapsto ax + b$ sending e_2 and e_3 to 0 and 1 respectively sends e_1 to

$$\lambda = \frac{e_1 - e_2}{e_3 - e_2}$$

and this depends only on τ. This function λ is holomorphic on \mathbb{H}, and is invariant under $\Gamma(2)$ (a normal subgroup of index 6 in Γ), but not under Γ. The 6 cosets of $\Gamma(2)$ in Γ give the 6 possible values for λ. These two functions are related by:

$$J(\tau) = \frac{4(1 - \lambda(\tau) + \lambda(\tau)^2)^3}{27\lambda(\tau)^2(1 - \lambda(\tau))^2}$$

Thus six values of λ correspond to each value of J. Then

$$\beta(x) = \frac{4(1 - x + x^2)^3}{27x^2(1 - x)^2}$$

is a Belyi function. It has triple zeros of β at $e^{\pm 2\pi i/6}(= \zeta_6^{\pm 1})$, double zeros of $\beta - 1$ at $-1, \frac{1}{2}, 2$, and double poles of β at 0, 1, ∞.

2
2 Embeddings of Graphs, Maps and Hyper-maps

Graph $G = (V, E)$ (vertices and edges), connected, finite (relax this later), allow loops $\bigcirc \bullet$ and multiple edges $\bullet \bigcirc \bullet$. Map $M : G \hookrightarrow X$, X is a surface, connected, compact, without boundary, and oriented (chosen orientation counter-clockwise). The faces (connected components of $X \ G$) must be simply-connected, i.e. homeomorphic to an open disc. Examples: Platonic solids on $X = S^2$.

Assume that G is bipartite, i.e. we can colour the vertices black and white so that each edge joins a black vertex to a white vertex $\circ \longrightarrow \bullet$ (possible iff each circuit in G has even length). Call these bipartite maps (=dessins d’enfants) denoted by B.

2.1 Examples of Bipartite Maps

1. The dessin B_1 corresponding to β is

2. $B_2 = \begin{pmatrix} \bullet \\ \circ \end{pmatrix}$ Quotient of B_1 by a half-turn about $\frac{1}{2}$.

3. Identify opposite edges of the hexagon to get a bipartite map B_3 on a
Each black and white pair are joined by a single edge, so $G = K_{3,3}$, the complete bipartite graph with 3 black and 3 white vertices.

Describe B algebraically: use the orientation of X to define two permutations x and y of the set E of edges. For each $e \in E$, ex and ey are the next edges around the incident black and white vertices, following the orientation of X. Warning: these are not generally automorphisms.

The orders l, m, n of x, y, xy are the least common multiples of their cycle lengths. Call (l, m, n) the type of B. E.g. B_1 and B_2 have type $(3, 2, 2)$, B_3 has type $(3, 3, 3)$. The monodromy group of B is the subgroup $G = \langle x, y \rangle$ generated by x and y in the symmetric group $\text{Sym}(E)$ of all permutations of E.

G is connected, so G acts transitively on E, so the action is equivalent to the action on the cosets $Hg \ (g \in G)$ of a stabilizer $H = G_e \ (e \in E)$. Say G acts regularly if $G_e = 1$; this action is equivalent to G acting on itself by right multiplication.

In B_1, $x^3 = y^2 = (xy)^2 = 1$, and these relations define the dihedral group D_3 of order 6, so G is a quotient of D_3. G is transitive on the 6 edges, so $|G : G_e| = 6$ (the index of the subgroup), so $G \cong D_3$ with $G_e = 1$. G acts regularly. In B_2, $G \cong D_3$, but $|G_e| = 2$, so the action is not regular.
In B_3, $G \cong C_3 \times C_3$ acting regularly. Here $x^3 = y^3 = 1$ and $xy = yx$.

2.2 More Definitions

Algebraic bipartite map: (G, x, y, E) where $G = \langle x, y \rangle$ is a permutation group acting transitively on a set E. Reconstruct a bipartite map B from (G, x, y, E):

- **edges** = elements of E
- **black/white vertices** = cycles of x and y
- **faces** = cycles of xy

Exercise 2.1 Take $x = (1, 2, \ldots, N)$ and $y = (1, 2)$ in S_N. Find B and G.

An **automorphism** of B is a permutation of E commuting with x and y, or equivalently commuting with G. E.g. rotations for the example dessins B_1 and B_3, translations for B_3, but only the identity for B_2. The automorphisms form a group

$$\text{Aut } B = C(G) = C = \{ c \in \text{Sym}(E) \mid cg = gc \text{ for all } g \in G \},$$

the centralizer of G in $\text{Sym}(E)$.

A permutation group is **semiregular** (acts freely) if each stabiliser is trivial.

The group is

$$\begin{cases} \text{semiregular} \\ \text{transitive} \\ \text{regular} \end{cases} \text{ as } \begin{cases} \text{at most} \\ \text{at least} \\ \text{exactly} \end{cases} \text{ one group element takes one point to another.}$$

Thus regular \iff transitive and semiregular.

Theorem 2.1 Let G be any transitive group, and $C = C(G)$ its centraliser.

(i) C acts semiregularly.

(ii) C acts regularly iff G does.

(iii) If C and G act regularly then $C \cong G$.

Proof.

(i) Let $c \in C$ fix e. Any e' has the form $e' = eg$ for some $g \in G$ by transitivity. Then $e'c = egc = ecg = eg = e'$, so $c = 1$.

5
(ii) Let C act regularly. Then C is transitive, so its centraliser is semiregular by (i) applied to C; but G commutes with C, so G is semiregular, and being transitive it must be regular. Conversely, let G act regularly, so it is acting on itself by right-multiplication $\rho_g : e \mapsto eg$; then left-multiplication $\lambda_c : e \mapsto c^{-1}e$ commutes with right-multiplication $(c^{-1}(eg) = (c^{-1}e)g)$, and acts transitively, so C is transitive, and C is semiregular by (i), so C is regular.

(iii) When C and G act regularly, then $\lambda_g \leftrightarrow \rho_g$ gives the isomorphism $C \cong G$.

A dessin B is regular if G (equivalently $\text{Aut } B$) is regular in E. From the last examples B_1 and B_3 are regular, B_2 is not.

Exercise 2.2 Show that $C \cong N_G(G_e)/G_e$ where $N_G(G_e)$ is the normaliser of G_e in G.

Exercise 2.3 If B is a regular dessin of type (l, m, n) with N edges, what is its genus? Are there finitely or infinitely many dessins of a given type and genus?