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4 From Dessins to Holomorphic Structures

4.1 Coverings

Let B = (G, x, y, E) and B′ = (G′, x′, y′, E ′) be algebraic bipartite maps.
A morphism γ : B → B′ or covering consists of a group-homomorphism
θ : G → G′ and a function φ : E → E ′ such that x 7→ x′ and y 7→ y′ under
θ, and φ(eg) = φ(e)θ(g) for all e ∈ E, and for g = x, y (equivalently for all
g ∈ G).

Example: B1 → B2 = C2\B1 in lecture 2.
More generally, B → A\B = B′, where A ≤ AutB with G′, x′, y′ the

actions of G, x and y on the orbits of A. Coverings induced by automorphisms
in this way are regular, or normal.

Exercise 4.1. Show that θ and φ must be epimorphisms.

γ is an isomorphism, iff θ and φ are bijections, and then an automorphism
if B = B′.

Exercise 2.2: AutB = C(G) ∼= NG(Ge)/Ge. Algebraic bipartite maps
form a category.

The topological analogue of a morphism γ is a branched covering X → X ′

of surfaces, preserving orientation, with black vertices, white vertices, edges
and faces on X ′ lifting to the same on X, and branching only at vertices or
face-centers. We have a category of topological bipartite maps, and lecture
2 described a functor from these to algebraic bipartite maps. We can easily
reverse this process, but with more work we can obtain holomorphic, rather
than topological structures from algebraic bipartite maps.

4.2 Triangle Groups and Bipartite Maps

Consider algebraic bipartite maps of a given type (l,m, n), so in G we have
xl = ym = zn = xyz = 1. Consider the (abstract) group

∆ = ∆(l,m, n) = 〈X, Y, Z |X l = Y m = Zn = XY Z = 1 〉
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G is a quotient of ∆ by X 7→ x, etc. Then ∆ → G → Sym(E) gives
a transitive action of ∆ on the edge set E of B. Bipartite maps of type
(l,m, n) ↔ ”transitive actions of ∆”. (Warning: actions of ∆ can give maps
of type (l′, m′, n′) where l′|l, etc.) These actions correspond to conjugacy clas-
ses of subgroups ∆e ≤ ∆ (e ∈ E). B is finite (compact) ⇔ |∆ : ∆e| < ∞.
Coverings B → B′ correspond to inclusions ∆e ≤ ∆e′ (easy exercise). Regu-
lar coverings correspond to normal inclusions. AutB ∼= N∆(∆e)/∆e (exercise
2.2) Theorem 2.1 and exercise 2.2 give

Theorem 4.1. B is regular if and only if ∆e E ∆, in which case

G ∼= AutB ∼= ∆/∆e.

Example 4.1. Let B correspond to the regular representation of G = Cn ×
Cn = 〈x, y |xn = yn = 1, xy = yx 〉. Then xy has order n, so the type
is (n, n, n). Take ∆ = ∆(n, n, n), ∆e = Ker(∆ → G) E ∆. G is abelian,
so ∆e ≥ ∆′ = ”commutator subgroup of ∆”. Both have index n2 in ∆, so
∆e = ∆′. Here G ∼= AutB ∼= ∆/∆e = ∆ab.

The triangle group of type (l,m, n) has the same presentation as ∆ (gene-
rators γ0, γ1, γ∞ in Jürgen’s lectures), so identify ∆ with this group, X, Y, Z =
”rotations through 2π

l
,2π

m
,2π

n
about the vertices of a triangle T with internal

angles π
l
, π
m

,π
n
”. Assume that 1

l
+ 1

m
+ 1

n
< 1 (typical case); if not, replace H

with C or Ĉ. H is tesselated by the images of T under the extended triangle
group ∆[l,m, n] generated by reflections in the sides of T , and ∆ = ∆(l,m, n)
is the even subgroup of index 2, preserving orientation.

We can colour the vertices black, white or red as they are images of the
vertices of T fixed by X, Y or Z. Every triangle has one vertex of each colour.
Their valencies are 2l, 2m, 2n respectively.
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Delete red vertices (∗)
and incident edges

//

This gives a bipartite map of type (l,m, n) on H. This is the universal biparti-
te map B∞(l,m, n) of type (l,m, n). It is a regular map, with AutB∞(l,m, n) =
∆(l,m, n), edge-stabiliser ∆e = 1.
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Theorem 4.2. Every bipartite map B of type (l,m, n) is isomorphic to a
quotient A\B∞(l,m, n) of B∞(l,m, n) by a subgroup A ≤ AutB∞(l,m, n).

Proof. Take A to consist of the automorphisms of B∞(l,m, n) induced by
the subgroup ∆e of ∆, and check that B ∼= A\B∞(l,m, n). �

4.3 Holomorphic Structures

A\B∞(l,m, n) has extra holomorphic structure, so denote it by Bhol. H is a
Riemann surface, and ∆e acts as a discontinuous group of automorphisms
of H (since ∆ does), so Bhol is on a Riemann surface X = A\H. Coverings
B → B′ of bipartite maps correspond to inclusions ∆e ≤ ∆e′ in ∆, so these
induce branched coverings X → X ′ of Riemann surfaces. In particular, if we
take ∆e′ = ∆, so |E ′| = 1 corresponding to the trivial bipartite map with
one edge, we get a covering X → X ′ = Ĉ branched only over the vertices
0 and 1, and the face-centre at ∞. This is a Belyi function (provided X is
compact, i.e. B is finite). Then Belyi’s Theorem gives:

Theorem 4.3. If B is a finite algebraic map, then the Riemann surface X
underlying Bhol is defined, as a smooth projective algebraic curve, over the
field Q̄ of algebraic numbers.

Example 4.2 (Example 4.1 revisited). If B is as in example 4.1, the
Riemann surface X uniformised by ∆′ (=”commutator subgroup of ∆ =
∆(n, n, n)”) is the nth degree Fermat curve F = Fn with affine equation xn +
yn = 1, with Belyi function β : (x, y) 7→ xn. The black vertices are at (0, ζj

n)
j = 0, 1, . . . , n − 1, and the white vertices are at (ζk

n, 0) k = 0, 1, . . . , n − 1.
The edges (given by β−1([0, 1])) between vj = (0, ζj

n) and wk = (ζk
n, 0) are

given by (rζk
n, sζj

n) where r, s ∈ [0, 1] and rn + sn = 1.

In general,

AutB ∼= AutBhol ∼= N∆(∆e)/∆e

≤ NPSL2 R(∆e)/∆e (since ∆ ≤ PSL2 R
∼= Aut X.

Thus automorphisms of B act as automorphisms of the Riemann surface X
(equivalently, of the algebraic curve).

Example 4.3 (=Examples 1 and 2 revisited). If B is as in example 4.1
and 4.2, then AutB ∼= Cn × Cn, and this acts on X by multiplying x and y
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independently by nth roots of 1. In this case, AutB 6= Aut X, since Aut X is
a semidirect product (Cn×Cn)oS3 of AutB by a complement S3. The extra
S3 comes from permuting the 3 vertex-colours, or alternatively write X in
projective form as xn + yn + zn = 0, and let S3 permute the coordinates.

Exercise 4.2. Explain example 4.3 by describing NPSL2 R(∆e).

4.4 Non-cocompact Trianle Groups

Suppose we want to consider all bipartite maps B of type (3, 2, n) without
restricting n. We take

∆ = ∆(3, 2,∞) = 〈X, Y, Z |X3 = Y 2 = Z∞ = XY Z = 1 〉
= 〈X, Y |X3 = Y 2 = 1 〉 eliminating Z = (XY )−1

∼= C3 ∗ C2.

The algebraic theory works as before. Geometrically, we take T to have a
black vertex at i (angle π

2
) and white vertex at ζ3 (angle π

3
), and a red vertex

at ∞ on ∂H (angle π
∞ = 0). Reflections in the sides of T generate ∆[3, 2,∞],

the images of T tesselate H, with vertices at the images of ∞.

Exercise 4.3. Show that ∆[3, 2,∞] = PGL2(Z), consisting of the transfor-
mations

τ 7→ aτ + b

cτ + d
a, . . . , d ∈ Z, ad− bc = 1

or
τ 7→ aτ̄ + b

cτ̄ + d
a, . . . , d ∈ Z, ad− bc = −1.

The first type form the even subgroup Γ = PSL2(Z).

The orbit of ∞ under Γ is P1(Q) = Q ∪ {∞}, so this is the set of red
vertices. Deleting the red vertices and their incident edges, we get a bipartite
map B∞(3, 2,∞) of type (3, 2,∞). If ∆e is a subgroup of finite index in ∆ = Γ,
then ∆e\H is a compact Riemann surface minus finitely many points, one
for each orbit of ∆e on P1(Q)

To deal with bipartite maps B of all possible types, use ∆(∞,∞,∞) =
Γ(2), congruence subgroup of level 2 in Γ. Here T has 3 vertices on ∂H, at
0, 1 and ∞. Γ(2) is the even subgroup of ∆[∞,∞,∞] = ”group generated by
reflections in the sides of T ”. Images of T tesselate H, vertices are elements
p
q
∈ P1(Q), coloured black, white, red, as p is even and q is odd, or p and q are

both odd, or p is odd and q is even (orbits of Γ(2), see exercise 1.3). Deleting
red vertices and incident edges gives B∞(∞,∞,∞) = B∞, the universal
bipartite map. Every B is a quotient of B∞.

Exercise 4.4. Draw B∞!
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